library("ggplot2")
library("ggforce")
library("edm1")
library("smplot2")
library("shiny")
library("treemapify")
library("wesanderson")
Les graphs sont rélisés en choisisant l’Allemagne et la France pour les années 2000 et début 2010
Les données sont groupées par pays et un individu correspond à la concaténation des variables year et country.
pre_data <- read.table(file = "datas/owid-energy-data.csv",
sep = ",", fill = TRUE, head = TRUE, quote = "\\")
pre_data <- pre_data[-grep_all(pattern_v = c("ASEAN", "Africa", "Asia",
"Australia and New Zealand", "CIS",
"Central and South America",
"Central America",
"EU28", "Eastern Africa", "Eurasia",
"Europe", "European Union (27)", "G20",
"G7", "Latin America and Caribbean",
"[Ll]ow", "Middle", "Non\\-", "OECD", "OPEC", "Persian",
"U\\.S", "Wake"),
inpt_v = pre_data$country), ]
pre_data <- cbind("individual" = paste(pre_data$country, pre_data$year, sep = "_"), pre_data)
ref_vec <- c(
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
color_vec <- c(
"oil_electricity" = "#80549f",
"coal_electricity" = "#a68832",
"solar_electricity" = "#d66b0d",
"gas_electricity" = "#f20809",
"wind_electricity" = "#72cbb7",
"hydro_electricity" = "#2672b0",
"nuclear_electricity" = "#e4a701",
"biofuel_electricity" = "#156956",
"other_renewable_exc_biofuel_electricity" = "#426915"
)
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
data <- pre_data[, cur_vec]
vec_ids <- all_concat(c("France", "Germany"), c(2000:2012), sep = "_")
cur_data <- data.frame("values" = unlist(data[match(table = data$individual, x = vec_ids), 4:ncol(data)]),
type = colnames(data)[4:ncol(data)])
cur_data <- sum_group2(inpt_datf = cur_data, col_grp = "type", col_to_add = "values")
cur_data <- cur_data[match(x = unique(cur_data$type), table = cur_data$type), ]
rownames(cur_data) <- c(1:nrow(cur_data))
ggplot(data = cur_data, mapping = aes(x = "", y = values, fill = type)) +
geom_bar(stat = "identity") +
coord_polar("y", start = 0) +
theme_minimal() +
labs(title = "Type d'énergie utilisées pour générer de l'électricité\n par plusieurs pays entre 2000 et 2012"
)
ggplot(data = cur_data, mapping = aes(y = reorder(type, values), x = values)) +
geom_bar(stat = "identity") +
theme_minimal() +
labs(title = "Type d'énergie utilisées pour générer de l'électricité\n par plusieurs pays entre 2000 et 2012"
)
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
vec_ids <- all_concat(countries_v, c(2000:2012), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
cur_energie_v <- c("biofuel_electricity", "gas_electricity", "solar_electricity")
sum_v <- c()
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
sum_v <- c(sum_v, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind("country" = cur_data[, 2], "sum_energies" = sum_v))
cur_data$sum_energies <- as.numeric(cur_data$sum_energies)
cur_data <- sum_group1(inpt_datf = cur_data, col_grp = "country", col_to_add = "sum_energies")
cur_data <- cur_data[match(x = countries_v, table = cur_data$country), ]
ggplot(data = cur_data, mapping = aes(x = sum_energies, y = reorder(country, sum_energies))) +
geom_col() +
theme_minimal() +
labs(title = "Pays choisis ayant généré le plus d'électricité entre 2000 et 2012",
x = "electricity twh",
y = "country")
ggplot(data = cur_data, mapping = aes(x = sum_energies, y = reorder(country, -sum_energies))) +
geom_col() +
theme_minimal() +
labs(title = "Pays choisis ayant généré le moins d'électricité entre 2000 et 2012",
x = "electricity twh",
y = "country")
cur_vec <- c("individual",
"country",
"year",
"biofuel_cons_change_twh",
"coal_cons_change_twh",
"gas_cons_change_twh",
"hydro_cons_change_twh",
"nuclear_cons_change_twh",
"oil_cons_change_twh",
"other_renewables_cons_change_twh",
"solar_cons_change_twh",
"wind_cons_change_twh")
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
vec_ids <- all_concat(countries_v, c(2004:2009), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
sum_vec <- c()
cur_energie_v <- c(cur_vec[(match(x = "biofuel_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "gas_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "solar_electricity", table = ref_vec) + 3)])
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
sum_vec <- c(sum_vec, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind("country" = cur_data[, "country"], "sum_cons_change" = sum_vec))
cur_data$sum_cons_change <- as.numeric(cur_data$sum_cons_change)
cur_data <- sum_group1(inpt_datf = cur_data, col_grp = "country", col_to_add = "sum_cons_change")
cur_data <- cur_data[match(x = unique(countries_v), table = cur_data$country), ]
ggplot(data = cur_data, mapping = aes(x = sum_cons_change, y = reorder(country, sum_cons_change))) +
geom_col() +
theme_minimal() +
labs(title = "Pays choisis ayant le plus grand volume de changement de consommation\n électrique de telle ou telle énergie sur une période choisie", x = "différence d'énergie par rapport à t - 1", y = "country")
ggplot(data = cur_data, mapping = aes(x = sum_cons_change, y = reorder(country, -sum_cons_change))) +
geom_col() +
theme_minimal() +
labs(title = "Pays choisis ayant le plus petit volume de changement de consommation\n électrique de telle ou telle énergie sur une période choisie", x = "différence d'énergie par rapport à t - 1", y = "country")
cur_vec <- c("individual",
"country",
"year",
"biofuel_cons_change_pct",
"coal_cons_change_pct",
"gas_cons_change_pct",
"hydro_cons_change_pct",
"nuclear_cons_change_pct",
"oil_cons_change_pct",
"other_renewables_cons_change_pct",
"solar_cons_change_pct",
"wind_cons_change_pct")
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
vec_ids <- all_concat(countries_v, c(2004:2009), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
sum_vec <- c()
cur_energie_v <- c(cur_vec[(match(x = "biofuel_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "gas_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "solar_electricity", table = ref_vec) + 3)])
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
sum_vec <- c(sum_vec, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind("country" = cur_data[, "country"], "sum_cons_change" = sum_vec))
cur_data$sum_cons_change <- as.numeric(cur_data$sum_cons_change)
cur_data <- sum_group1(inpt_datf = cur_data, col_grp = "country", col_to_add = "sum_cons_change")
cur_data <- cur_data[match(x = unique(countries_v), table = cur_data$country), ]
ggplot(data = cur_data, mapping = aes(x = sum_cons_change, y = reorder(country, sum_cons_change))) +
geom_col() +
theme_minimal(base_size = 11) +
labs(title = "Pays choisis ayant la plus grande part de changement de consommation\n électrique des énergies choisies entre 2000 et 2012",
x = "somme différence d'énergie par rapport à t - 1 en %",
y = "country")
ggplot(data = cur_data, mapping = aes(x = sum_cons_change, y = reorder(country, -sum_cons_change))) +
geom_col() +
theme_minimal() +
labs(title = "Pays choisis ayant la plus petite part de changement de consommation\n électrique des énergies choisies entre 2000 et 2012",
x = "somme différence d'énergie par rapport à t - 1 en %",
y = "country")
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
energies_v <- c("biofuel_electricity", "gas_electricity")
vec_ids <- all_concat(countries_v, c(2004:2009), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
cur_sum <- c()
cur_col_v <- match(x = energies_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
cur_sum <- c(cur_sum, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind(cur_data[, c("country", "year")], "values" = cur_sum))
cur_data$values <- as.numeric(cur_data$values)
ggplot(data = cur_data, mapping = aes(x = year, y = values, color = country, fill = country)) +
geom_point() +
geom_line() +
geom_area(alpha = 0.4) +
theme_minimal() +
labs(title = "Evolution de la production électrique des énergies choisies\n de pays choisis en twh", x = "year", y = "différence d'énergie par rapport à t - 1 en %")
ggplot(data = cur_data, mapping = aes(x = year, y = values, fill = country)) +
geom_area(alpha = 0.4) +
theme_minimal() +
labs(title = "Evolution de la production électrique des énergies choisies\n de pays choisis en twh", x = "year", y = "différence d'énergie par rapport à t - 1 en %")
cur_vec <- c("individual",
"country",
"year",
"biofuel_cons_change_pct",
"coal_cons_change_pct",
"gas_cons_change_pct",
"hydro_cons_change_pct",
"nuclear_cons_change_pct",
"oil_cons_change_pct",
"other_renewables_cons_change_pct",
"solar_cons_change_pct",
"wind_cons_change_pct")
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
vec_ids <- all_concat(countries_v, c(2004:2009), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
sum_vec <- c()
cur_energie_v <- c(cur_vec[(match(x = "nuclear_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "biofuel_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "coal_electricity", table = ref_vec) + 3)])
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
sum_vec <- c(sum_vec, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind(cur_data[, c("country", "year")], "sum_cons_change" = sum_vec))
cur_data$sum_cons_change <- as.numeric(cur_data$sum_cons_change)
ggplot(data = cur_data) +
geom_point(mapping = aes(color = country)) +
geom_line(mapping = aes(color = country)) +
geom_area(mapping = aes(fill = country), alpha = 0.35) +
aes(x = year, y = sum_cons_change) +
theme_minimal() +
labs(title = "Evolution de la différence de consommation électrique\n des énergies choisies des pays choisis en pourcentage",
x = "year",
y = "Pourcentage d'électricité consommé comparé à l'année précédente")
ggplot(data = cur_data, mapping = aes(x = year, y = sum_cons_change, fill = country)) +
geom_area(alpha = 0.45) +
theme_minimal() +
labs(title = "Evolution de la différence de consommation électrique\n des énergies choisies des pays choisis en pourcentage",
x = "year",
y = "Pourcentage d'électricité consommé comparé à l'année précédente")
ref_vec <- c(
"hydro_electricity",
"nuclear_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
cur_vec <- c("individual",
"country",
"year",
"hydro_cons_change_pct",
"nuclear_cons_change_pct",
"other_renewables_cons_change_pct",
"solar_cons_change_pct",
"wind_cons_change_pct")
data <- pre_data[, cur_vec]
countries_v <- c("France", "Germany")
vec_ids <- all_concat(countries_v, c(2004:2009), sep = "_")
cur_data <- data[match(x = vec_ids, table = data$individual), ]
sum_vec <- c()
cur_energie_v <- c(cur_vec[(match(x = "nuclear_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "hydro_electricity", table = ref_vec) + 3)],
cur_vec[(match(x = "solar_electricity", table = ref_vec) + 3)])
cur_col_v <- match(x = cur_energie_v, table = colnames(cur_data))
for (i in 1:nrow(cur_data)){
sum_vec <- c(sum_vec, sum(cur_data[i, cur_col_v]))
}
cur_data <- as.data.frame(cbind(cur_data[, c("country", "year")], "sum_cons_change" = sum_vec))
cur_data$sum_cons_change <- as.numeric(cur_data$sum_cons_change)
ggplot(data = cur_data) +
geom_line(aes(color = country)) +
geom_point(aes(color = country)) +
geom_area(mapping = aes(fill = country), alpha = 0.35, stat = "identity") +
aes(x = year, y = sum_cons_change) +
theme_minimal() +
labs(title = "Evolution de la différence de consommation électrique des énergies choisies\n produites en interne des pays choisis en pourcentage",
x = "year",
y = "Pourcentage d'électricité consommé comparé à l'année précédente")
ggplot(data = cur_data, mapping = aes(x = year, y = sum_cons_change, fill = country)) +
geom_area(alpha = 0.45) +
theme_minimal() +
labs(title = "Evolution de la différence de consommation électrique des énergies choisies\n produites en interne des pays choisis en pourcentage",
x = "year",
y = "Pourcentage d'électricité consommé comparé à l'année précédente")
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
data <- pre_data[, cur_vec]
cur_data <- data[match(x = c("France_1995", "France_2023"),
table = data$individual), ]
colnames(cur_data)[4:ncol(data)] <- paste("twh_cons", colnames(data)[4:ncol(data)], sep = "-")
cur_data <- edm_pivot_longer2(inpt_datf = cur_data,
col_vars = c(4:ncol(cur_data)),
col_vars_to = "energy_source")
cur_data <- cur_data[, 3:ncol(cur_data)]
#cur_data
#cur_vec <- c("blue", "red", "yellow", "purple", "orange", "pink", "black", "green", "grey")
#unique(cur_data$energy_source)
#names(cur_vec) <- unique(cur_data$energy_source)
#ggplot(data = cur_data, mapping = aes(x = year, y = twh_cons, fill = energy_source)) +
# sm_slope(group = energy_source, labels = c("1995", "2023")) +
# scale_color_manual(name = "Legend",
# breaks = unique(cur_data$energy_source),
# values = cur_vec)
cur_data$twh_cons <- as.numeric(cur_data$twh_cons)
ggplot(data = cur_data, mapping = aes(x = year,
y = twh_cons,
group = energy_source,
color = energy_source)) +
geom_line() +
geom_point() +
theme_minimal() +
theme(legend.position = "bottom") +
scale_y_continuous(trans = "log2")
## Warning in scale_y_continuous(trans = "log2"): log-2 transformation introduced infinite values.
## log-2 transformation introduced infinite values.
ggplot(data = cur_data, mapping = aes(x = year,
y = twh_cons,
group = energy_source,
color = energy_source)) +
geom_line() +
geom_point() +
theme_minimal() +
theme(legend.position = "bottom")
cur_data2$twh_cons_1995 <- as.numeric(cur_data2$twh_cons_1995)
cur_data2$twh_cons_2023 <- as.numeric(cur_data2$twh_cons_2023)
#ggplot(data = cur_data2) +
# geom_segment(mapping = aes(y = energy_source,
# x = twh_cons_1995,
# xend = twh_cons_2023)) +
# geom_point(aes(
# y = energy_source,
# x = twh_cons_1995),
# size = 4
# ) +
# geom_point(aes(
# y = energy_source,
# x = twh_cons_2023,
# ),
# shape = 17,
# size = 4
# ) +
# theme_minimal() +
# labs(x = "twh_cons") +
# theme(legend.position = "bottom")
cur_data$twh_cons <- as.numeric(cur_data$twh_cons)
ggplot(data = cur_data, mapping = aes(x = twh_cons,
y = energy_source,
group = energy_source
)) +
geom_line() +
geom_point(mapping = aes(shape = year), size = 3) +
theme_minimal() +
theme(legend.position = "bottom")
cur_data <- pre_data[, c("low_carbon_share_elec", "fossil_share_elec", "individual")]
#sum(cur_data[cur_data$individual == "France_2012", 1:2])
cur_data <- as.numeric(cur_data[cur_data$individual == "France_2012", 1:2])
cur_data <- data.frame("type" = c("low_carbon", "high_carbon"),
"percentage" = c(cur_data[1], cur_data[2]) / 100,
"start" = c(0, cur_data[1] / 100 * pi),
"end" = c(cur_data[1] / 100 * pi, pi)
)
ggplot(data = cur_data) +
geom_arc_bar(
mapping = aes(
x0 = 1,
y0 = 1,
fill = type,
start = start - pi / 2,
end = end - pi / 2,
r0 = 0.75,
r = 1
)
) +
theme_minimal() +
theme(legend.position = "bottom")
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
cur_data <- pre_data[, cur_vec]
cur_data <- cur_data[cur_data$year == "2012", ]
tot_v <- c()
for (i in 1:nrow(cur_data)){
tot_v <- c(tot_v, sum(as.numeric(cur_data[i, 4:ncol(cur_data)])))
}
cur_data <- as.data.frame(cbind(cur_data, "tot" = tot_v))
cur_data <- cur_data[-grep(pattern = TRUE, is.na(cur_data$tot)), ]
cur_med <- median(cur_data$tot)
cur_mean <- mean(cur_data$tot)
cur_max <- max(cur_data$tot)
cur_data2 <- cur_data[cur_data$country == "France", ]
ggplot(data = cur_data2,
mapping = aes(x = tot,
y = country,
width = 0.1)) +
geom_col() +
geom_vline(aes(xintercept = cur_med, color = "median"), linetype = "dashed", linewidth = 0.5) +
geom_vline(aes(xintercept = cur_mean, color = "mean"), linetype = "dashed", linewidth = 0.5) +
geom_vline(aes(xintercept = cur_max, color = "max"), linetype = "dashed", linewidth = 0.5) +
scale_color_manual(values = c("red", "black", "blue")) +
scale_x_continuous(trans = "log10") +
theme_minimal() +
theme(legend.position = "bottom") +
labs(colour = "")
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
cur_data <- pre_data[, cur_vec]
cur_data <- cur_data[cur_data$individual == "France_2012", ]
colnames(cur_data)[4:ncol(cur_data)] <- paste("twh_cons", colnames(cur_data)[4:ncol(cur_data)], sep = "-")
cur_data <- cur_data[, c(2, 4:ncol(cur_data))]
cur_data
## country twh_cons-biofuel_electricity twh_cons-coal_electricity
## 7492 France 5.3 21.46
## twh_cons-gas_electricity twh_cons-hydro_electricity
## 7492 22.75 59.83
## twh_cons-nuclear_electricity twh_cons-oil_electricity
## 7492 425.41 12.71
## twh_cons-other_renewable_exc_biofuel_electricity
## 7492 0.51
## twh_cons-solar_electricity twh_cons-wind_electricity
## 7492 4.43 15.18
## 'data.frame': 1 obs. of 10 variables:
## $ country : chr "France"
## $ twh_cons-biofuel_electricity : num 5.3
## $ twh_cons-coal_electricity : num 21.5
## $ twh_cons-gas_electricity : num 22.8
## $ twh_cons-hydro_electricity : num 59.8
## $ twh_cons-nuclear_electricity : num 425
## $ twh_cons-oil_electricity : num 12.7
## $ twh_cons-other_renewable_exc_biofuel_electricity: num 0.51
## $ twh_cons-solar_electricity : num 4.43
## $ twh_cons-wind_electricity : num 15.2
write.table(x = cur_data, file = "data.csv", sep = ",")
cur_data <- edm_pivot_longer1(inpt_datf = cur_data,
col_vars = c(2:ncol(cur_data)),
col_vars_to = "type")
cur_data$twh_cons <- as.numeric(cur_data$twh_cons)
ggplot(data = cur_data,
mapping = aes(
fill = twh_cons,
area = twh_cons,
label = type
)) +
geom_treemap() +
geom_treemap_text(color = "white", place = "center", size = 15) +
scale_fill_gradient(high = "#501569", low = "DarkRed")
ggplot(data = cur_data,
mapping = aes(
fill = type,
area = twh_cons,
label = twh_cons
)) +
geom_treemap() +
geom_treemap_text(color = "black", place = "center", size = 15) +
scale_fill_manual(values = color_vec)
col_convertr <- function(inpt_datf){
for (i in 1:ncol(inpt_datf)){
if (all(mapply(function(x) return(can_be_num(x)), inpt_datf[, i]))){
inpt_datf[, i] <- as.numeric(inpt_datf[, i])
}
}
return(inpt_datf)
}
cur_vec <- c("individual",
"country",
"year",
"biofuel_electricity",
"coal_electricity",
"gas_electricity",
"hydro_electricity",
"nuclear_electricity",
"oil_electricity",
"other_renewable_exc_biofuel_electricity",
"solar_electricity",
"wind_electricity"
)
cur_data <- pre_data[, cur_vec]
cur_data <- cur_data[match(x = "France_2012", table = cur_data$individual),
c(2, 4:ncol(cur_data))]
colnames(cur_data)[2:ncol(cur_data)] <- paste("twh_cons", colnames(cur_data)[2:ncol(cur_data)], sep = "-")
cur_data <- col_convertr(edm_pivot_longer1(inpt_datf = cur_data,
col_vars = c(2:ncol(cur_data)),
col_vars_to = "type"))
ggplot(data = cur_data,
mapping = aes(x = twh_cons,
y = reorder(type, twh_cons),
fill = type)) +
geom_col() +
scale_fill_manual(values = color_vec) +
theme_minimal() +
theme(legend.position = "bottom")
## [1] 5.3 21.46 22.75 59.83 425.41 12.71 0.51 4.43 15.18
## attr(,"scores")
## 0.51 4.43 5.3 12.71 15.18 21.46 22.75 59.83 425.41
## 0.51 4.43 5.30 12.71 15.18 21.46 22.75 59.83 425.41
## Levels: 0.51 4.43 5.3 12.71 15.18 21.46 22.75 59.83 425.41
ggplot(data = cur_data, mapping = aes(fill = reorder(type, twh_cons), y = "", x = twh_cons)) +
geom_col() +
coord_polar(theta = "x", start = 0) +
scale_fill_manual(values = color_vec) +
theme(legend.position = "bottom")